Pytorch构建ResNet

学了几天Pytorch,大致明白代码在干什么了,贴一下。。

import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torch import nn, optim
from torch.nn import functional as F

class ResBlk(nn.Module):
    """
    resnet block
    """
    def __init__(self, ch_in, ch_out):
        super(ResBlk, self).__init__()
        
        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)
        
        self.extra = nn.Sequential()
        if ch_out != ch_in:
            # [b, ch_in, h, w] => [b, ch_out, h, w]
            self.extra = nn.Sequential(
                nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=1),
                nn.BatchNorm2d(ch_out)
            )
    
    def forward(self,x):
        """
        x:[b, ch, h, w]
        """
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        # short cut
        # extra module: [b, ch_in, h, w] => [b, ch_out, h, w]
        # element-wise add: [b, ch_in, h, w] with [b, ch_out, h, w]
        out = self.extra(x) + out
        
        return out
        
class ResNet18(nn.Module):
    
    def __init(self):
        super(ResNet18, self).__init__()
        
        self.conv1 = nn.Sequential(
            nn.Conv2d(3,64,kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64)
        )
        # followd 4 blocks
        # [b, 64, h, w] => [b, 128, h, w]
        self.blk1 = ResBlk(64,128)
        # [b, 128, h, w] => [b, 256, h, w]
        self.blk2 = ResBlk(128,256)
        # [b, 256, h, w] => [b, 512, h, w]
        self.blk3 = ResBlk(256,512)
        # [b, 512, h, w] => [b, 1024, h, w]
        self.blk4 = ResBlk(512,1024)
        
        self.outlayer = nn.Linear(1024, 10)
        
    def forward(self, x):
        
        x = F.relu(self.conv1(x))
        # [b, 64, h, w] => [b, 1024, h, w]
        x = self.blk1(x)
        x = self.blk2(x)
        x = self.blk3(x)
        x = self.blk4(x)
        
        x = self.outlayer(x)
        
        return x
    
def main():
    
    blk = ResBlk(64, 128)
    tmp = torch.randn(2, 64, 32, 32)
    out = blk(tmp)
    print(out.shape)
    

if __name__ == '__main__':
    main()


#
torch.Size([2, 128, 32, 32])

ResNet主要是利用残差相加的优势进行网络层数加深,原来输入图片是64通道,要求经过一个ResNet Block后输出是128维,那么那个要加的X也要升维变成128,因此代码里做出了处理。

 

posted @ 2019-08-08 16:22  嶙羽  阅读(1159)  评论(0编辑  收藏  举报